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We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time
series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable
window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this proce-
dure. After studying binomial multifractal time series with the present and earlier approaches of detrending for
comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical tempera-
ture, along with several experimental data sets possessing multifractal behavior.
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A large number of studies have been carried out to ana-
lyze scaling properties of fluctuations in time series. The
studies have involved time series of dynamical variables
from physical, biological, and financial systems �1,2�. For
scaling analysis different approaches have been suggested
and implemented, starting from the structure function
method to wavelet transform modulus maxima �WTMM�
�3–5� and the recent, detrended fluctuation analysis �DFA�
�6–8� and its variants �9–11�. The difficulty in characterizing
the scaling property stems from the fact that, the observed
time series is very often nonstationary. Hence, it is essential
to define fluctuations in a manner which takes proper account
of nonstationarity.

In this Brief Report, we propose a method, based on dis-
crete wavelet transform �12�, to separate the trend in the time
series from the fluctuations. The method is direct and sug-
gests itself naturally from the basic concepts underlying
wavelet decomposition, apart from being supplementary to
the detrended fluctuation analysis. The fact that the so-called
low-pass coefficients represent a coarse grained version of
the data in wavelet transform and the built-in ability of the
wavelets to have variable window sizes for coarse graining,
makes it a natural tool for identifying fluctuations around
trends at various scales. We use this method to examine scal-
ing behavior of a time series. For the purpose of checking the
efficacy of our procedure and comparison with multifractal
detrended fluctuation analysis �MFDFA�, we consider time
series generated �106 data points� from the binomial multi-
fractal model �2�, for which the scaling exponent is analyti-
cally calculable. The method has also been checked on
Gaussian random noise. We then analyzed the time series of
average spin densities �9�105 data points� in a simulation of
the 2D Ising model on a 256�256 lattice at the critical tem-
perature Tc, where each update of the system in the simula-
tion is taken as one time step �16,17�. These computer gen-
erated time series are shown in Fig. 1. Experimentally
measured data �18� of ion saturation currents and floating
potential in Tokamak plasma are shown in Fig. 2. These are
then analyzed for their multifractal analysis.

Before we describe our approach in detail, it is worth-
while to give a brief summary of some basic features of
scaling. For this purpose let x�ti� denote the value of an ob-
servable at ti= i�t. The set x�ti�; i=1,2 ,… ,N is then the time

series under consideration. A simple way to define fluctua-
tions, for a stationary time series at time scale �k=k�t, is

�xi��k� = x�ti + �k� − x�ti�, i = 1,2,…,N − k . �1�

These fluctuations are said to have scaling property, if the
probability distribution function �pdf� of �xi��k� has the
same form for different values of �k. Further, the parameters
that characterize the pdf depend in a well-defined manner on
�k. For example, for independent fluctuations with a Gauss-
ian pdf, we have the well-known scaling results for the mean
��k�t�=k���t� and variance �2�k�t�=k�2��t�. In general for
all finite moments mq of order q, this is expressed as

mq = ����x�k�t���q� =
1

N − k
�
i=1

N−k

��xi�k�t��q 	 �k�t���q�,

�2�

where ��q� is constant for monofractals. The Hurst exponent
H=��q=2�, equals 0.5 for the Gaussian white noise. The
scaling property of the pdf considered above implies that, the
variability at different time scales in time series is fractal in
nature; it is self-similar �more precisely self-affine�. Mono-
fractals with H�0.5 are long range anticorrelated and for
H�0.5 the signal shows long range correlation. For time
series of complex systems, it often turns out that scaling is
present but the dependence of scale factor on q is not linear
but decreases with increasing q. This type of scaling behav-
ior is termed as multifractal.

The scaling �multiscaling� property of the time series
arises from the corresponding property of the fluctuations.
More precisely, in this connection, the probability distribu-
tion and the time correlations of the fluctuations are the prop-
erties of importance. There are complications and difficul-
ties, if conclusions about the scaling behavior of a dynamical
system, are entirely based on a finite length time series in
presence of correlations. This is the case for most physiologi-
cal and financial time series and the associated problems
have been highlighted in Refs. �13–15�.

The difficulties of standard multifractal formalism, based
on the structure function method, led to the development of
WTMM, a continuous wavelet transform based approach.
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Although like the structure function method, this is also a
global approach, the built-in advantage of wavelets in iden-
tifying scaling properties of data, made WTMM quite ideal
in finding the multifractal behavior. In a later stage, the mul-
tifractal detrended fluctuation analysis �MFDFA� has been
developed to tackle the nonstationary time series. The basic
idea in the above approach is to isolate fluctuations in the
data set, through multiple local windows, of varying sizes.
For this purpose, once the window size is fixed, an appropri-
ate fit, e.g., a polynomial fit, is employed to identify the trend
and the fluctuations are then isolated, by subtracting the
trend from the data points. The method we propose is based
on the fact that, the low-pass coefficients in wavelet trans-
form, resemble the data, albeit in an averaged manner. The
extent of averaging depends on the level of wavelet decom-

position. It supplements the MFDFA, in the sense that, in-
stead of a polynomial fit, one can use the appropriate low-
pass coefficients for capturing the trend.

The basis elements in discrete wavelet transform, provide
a complete and orthonormal set, unlike the continuous wave-
lets, wherein the basis functions usually comprise an over-
complete set. The two key members are the scaling �or father
wavelet� 	�t� and the mother wavelet 
�t�, respectively, sat-
isfying 
dt	�t�=A and 
dt
�t�=0. Here A is a constant; 	�t�
and 
�t� satisfy square integrability conditions apart from
being orthogonal to each other. The two key operations, un-
derlying the construction of a complete orthonormal basis
set, are translation and scaling of the father and mother
wavelets, which have strictly finite sizes. Translation by dis-
crete steps brings in the index k to both father and mother

FIG. 1. Time series simulated through �a� bi-
nomial multifractal model and �b� 2D Ising
model at critical temperature.

FIG. 2. Time series of, �a� ion saturation cur-
rent �IC�, �b� floating potential �FP�, 6 mm inside
the main plasma, and �c� ion saturation current
�ISC�, when the probe is in the limiter shadow.
Each time series has approximately 24 000 data
points.

MANIMARAN, PANIGRAHI, AND PARIKH PHYSICAL REVIEW E 72, 046120 �2005�

046120-2



wavelets, 	k�t��	�t−k� and 
k�t�. Producing daughter
wavelets, copies of the mother wavelet, albeit thinner and
taller, through scaling allows one to form a complete set.
With the scaling index j, conveniently running from 0 to �,
wavelets can be compactly written as 
 j,k�t�, where 
0,0�t� is
the original mother wavelet. The key equation underlying all
wavelets is the multiresolution-analysis �MRA� equation,

	�t� = �
n

h�n���2�	�2t − n� ,

�3�

�t� = �

n

h̃�n���2�	�2t − n� .

Here, h�n� and h̃�n� are the low- and high-pass filter coeffi-
cients satisfying the constraints, �nh�n�=�2, �nh�n�h�n
−2k�=�k,0 , �nh̃�n�=0, �nh̃�n�h̃�n−2k�=�k,0, and

�nh̃�n�h�n−2k�=0 originating from the normalization and
orthogonality conditions mentioned above. Here n is the
length of the filter coefficients. The MRA equation can be
used to obtain recurrence relations

cj�k� = �
n

h�n − 2k�cj+1�n� ,

�4�
dj�k� = �

n

h̃�n − 2k�cj+1�n� .

Here, cj�k� and dj�k� are, respectively, the low-pass and high-
pass coefficients at level j; MRA equation implies that, both
of these coefficients can be obtained from the next level low-
pass coefficients alone. We note that, the low-pass coefficient
is given by, cj+1�k�=
dt	 j+1,k�t�f�t�, where f�t� is the func-
tion or data under consideration. In the limit, j→�, the scal-
ing function tends to the Dirac delta function; hence the cor-
responding low-pass coefficient cj→��k� is the value of the
function at location k. Therefore, starting from the values of
the function at the highest resolution, one can find all the
scaling and high-pass coefficients, without explicitly know-
ing the wavelet basis elements.

In a broad sense, the low-pass coefficients capture the
trend and the high-pass coefficients keep track of the fluc-
tuations in the data. In case of the simplest Haar wavelet

�n=2�, h�0�=h�1�=1/�2, and h̃�0�=−h̃�1�=1/�2. The low-
pass and high-pass or wavelet coefficients are, respectively,
the averages and differences of data points. In case of other
discrete wavelets, these coefficients are appropriately
weighted averages and differences. For example,
Daubechies-4 �DB4� wavelet is characterized by four filter
coefficients. It is worth mentioning that, the Daubechies fam-
ily of wavelets are made to satisfy vanishing moments con-
ditions, 
dttm
 j,k�t�=0. This makes them blind to variations
in a data set, which can be captured by polynomials of suit-
able degree, thereby making them ideal for separating fluc-
tuations from average behavior. This property will be made
use of extensively in the present paper. Wavelets are natu-
rally endowed with an appropriate window size, which mani-
fests in the scale index or level, and hence can capture the
local averages and differences, in a window of one’s choice.

The data for wavelet analysis is assumed to be of the size
2L, in case the same is not available recourse is taken to
padding. In the present analysis, we have used constant pad-
ding at the ends. For the above data, one can have a maxi-
mum L level decomposition, although one can stop at any
level below L. The level-1 high-pass coefficients are half the
size of the data and represent fluctuations at the lowest scale.
The progressively higher level coefficients represent fluctua-
tions at larger scales; the low-pass coefficients at a given
level represent the appropriately averaged data, commensu-
rate with the window size of the level concerned. It should
be mentioned that, for wavelets other than Haar, artifacts,
both in low- and high-pass coefficients, arise at the end-
points, due to the need for circular or other forms of required
extensions. We have used constant padding at both the ends,
discarding the coefficients originating from them, to avoid
the edge effect because of wrapping of wavelet filters by the
convolution process during decomposition.

In the present approach, a time series or the cumulative
distribution in case of binomial multifractal data have been
subjected to a multilevel decomposition. Reconstructed se-
ries after removal of successive high-pass coefficients was
subtracted from the data to extract the fluctuations, F�s� as a
function of scale s. Here, s denotes the level of decomposi-
tion. As is clear, reconstruction after removing the first level
high-pass coefficients achieves coarse graining in a window
size, which depends on the length of the filter coefficients.
For a given wavelet, removal of other level high-pass coef-

TABLE I. The h�q� values of binomial multifractal series
�BMFS� computed analytically �BMFSa�, through MF-DFA
�BMFSs� and wavelet �BMFSw� approach. For q�0, DB4 and for
q�0, DB14 wavelets have been used.

q h�q�BMFSa
h�q�BMFSs

h�q�BMFSw

−10.0000 1.9000 1.7544 1.7534

−9.0000 1.8889 1.7439 1.7558

−8.0000 1.8750 1.7307 1.7588

−7.0000 1.8572 1.7138 1.7627

−6.0000 1.8337 1.6914 1.7677

−5.0000 1.8012 1.6605 1.7746

−4.0000 1.7544 1.6154 1.7845

−3.0000 1.6842 1.5470 1.7998

−2.0000 1.5760 1.4551 1.8224

−1.0000 1.4150 1.3802 1.6806

0 0 0 0

1.0000 1.0000 0.9923 1.0316

2.0000 0.8390 0.8169 0.8538

3.0000 0.7309 0.6995 0.7384

4.0000 0.6606 0.6253 0.6660

5.0000 0.6139 0.5771 0.6193

6.0000 0.5814 0.5444 0.5878

7.0000 0.5578 0.5212 0.5655

8.0000 0.5400 0.5040 0.5490

9.0000 0.5261 0.4907 0.5365

10.0000 0.5150 0.4803 0.5267
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ficients enlarges the window size. As has been mentioned in
the beginning, the fact that in Daubechies �DB� family of
wavelets, the low-pass captures the appropriate polynomial
behavior of the data set, makes them quite useful for our
analysis. We have used DB4 to DB20 basis sets for compari-
son. It was observed, for the data under consideration here,
that after a certain point, the improvements in the scaling
exponents due to a higher wavelet was minimal.

Analogous to detrended fluctuation analysis, one can cal-
culate the scaling exponents from the behavior of Fq�s� de-
fined as

Fq�s� � 
 1

N
�
k=1

N

�F�s��q�1/q

. �5�

Here q can take both positive and negative integral values,
except zero. If the time series, under analysis, possesses frac-
tal behavior, then Fq�s� reveals a power-law scaling,

Fq�s� 	 sh�q�. �6�

As noted earlier, if H is constant for all q then the series is
monofractal, otherwise it is multifractal. For q�0, h�q� cap-
tures the scaling properties of the small fluctuations, whereas
for q�0 those of the large fluctuations. Often, the scaling
exponent h�q� is represented in terms of ��q�, where ��q�
=qh�q�−1.

In Table I, the h�q� values are given for the binomial
multifractal time series, using analytical method, MF-DFA
and the present discrete wavelet based approach. In MF-
DFA, we have used a quadratic polynomial fit, to isolate the
trend. A host of wavelets have been tested, the results shown
here correspond to DB14 for q�0 and DB4 for q�0, since
the improvement was minimal after that.

As is clear from the table, for positive q, the wavelet
estimate of the Hurst exponent for the binomial multifractal
series is extremely reliable when compared with the analyti-
cal result. For q�0, when DB14 was used in the wavelet
based approach, smaller h�q� values were obtained. How-
ever, h�q� values decreased with increasing values of q. It
was found that, the results for q�0 improves substantially if
one uses a lower order Daubechies wavelet, e.g., DB4. It
should be noted that, this amounts to capturing the trend by a
lower order polynomial curve, like in the MF-DFA approach.
Higher order wavelets, having a large number of filter coef-
ficients average the data over a much bigger window size and
hence are not expected to perform well in estimating the
smaller fluctuations. Hence, in our analysis a higher order
wavelet has been used for q�0 and a lower order one for
q�0. These results are shown in Fig. 3. Analysis of the
scaling properties of the spin density fluctuations and experi-
mental data sets reveal that the corresponding time series
have multiscaling behavior, as is seen clearly in Fig. 4.

In conclusion, the wavelet based method presented here,
for calculating the scaling exponents, is found to be quite
efficient, fast in computation and reliable. It performed well
for both synthesized and experimental data. Our method is
well suited to characterize both large �q�0� and small �q
�0� fluctuations. In the latter case, one needs to use a lower
order wavelet, since the larger size of the filter coefficients of
the higher order wavelets average over a bigger window size,
thereby distorting the smaller fluctuations. As compared to
MF-DFA, the discrete wavelet based approach has less num-
ber of windows. This procedure compliments the former in
the sense that, fluctuations at different scales have been iso-
lated by subtracting the local polynomial trend captured
through Daubechies family of wavelets.

The authors are grateful to Dr. R. Jha for providing the
experimental data for our analysis.

FIG. 3. Wavelet method ��� and MF-DFA ��� analysis of com-
puter generated time series for binomial multifractal model show
the dependence of ��q� on q, which compares quite well with the
analytically calculated ��q� values �dashed line�. For q�0, DB4
and for q�0, DB14 wavelets have been used

FIG. 4. Wavelet based fluctuation analysis of the experimental
data �shown in Fig. 2� and spin density values of the 2D Ising
model at Tc, shows the dependence of ��q� on various values of q.
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